Layne says if you are in the market for a lightweight shotgun and plan to shoot it a lot, Benelli’s ComforTech system deserves a serious look.

I grew up on double-barrel shotguns. This probably explains why I can pick up any over-under or side-by-side and shoot it reasonably well. Not so with the semiautomatics. Subtle differences in the way autoloaders of various brands and models handle and feel, differences that might go unnoticed by most shooters, can greatly influence how well I shoot a shotgun. And it seems like I always do a better job in the field with semi-gauge guns. To me, the trimness of a really good 20- or 28-gauge autoloader, compared to one of larger gauge, is what gives it the dynamic qualities required of an upland gun. After a while, it becomes a part of the shooter rather than an uncomfortable appendage.

One autoloader I have always been able to shoot quite well is the Benelli. Hot or cold, morning or evening, early season or late season, I can usually pull my own, and it doesn’t seem to matter which particular variation I’m practicing, as long as it is in 20 gauge. I have managed to pull off some pretty fancy shots with the most expensive Legacy, but I’ve shot the less expensive M2 Field equally well.

How a Benelli Works

As the advertisements tell us, Benelli shotguns are Inertia Driven, which is a fancy way of saying they are recoil operated. But this particular design comes with a twist that John Browning might not have thought of. To help you better understand how some of these design differences work when the Benelli action cycles during firing, I’ll break it down into four steps.

Chambering: As the bolt moves forward into battery, a steel control pin moves along a curved track in the bolt body and causes the locking lugs to rotate into engagement with the barrel extension. When the bolt is fully seated, a red dot on the drop lever located just forward of the trigger comes into view.

Pulling the trigger fires the shell in the chamber.

Firing: During firing, everything except the bolt body of the gun moves to the rear. And since the curved guide track in the bolt body is, in effect, moving forward relative to the rest of the gun, it presses against the control pin and causes an even firmer engagement between the rotating bolt head and the barrel extension during peak chamber pressure. At this point in the cycle, the inertia spring is compressed between the head and body of the bolt, and in preparation for the next firing, the cartridge lever shifts up to allow a shell to move from the magazine into the bottom of the receiver.

Recall: As the recall cycle nears its end, chamber pressure drops and rearward travel of the gun slows down. At this point the inertia spring forces the body of the bolt to the rear, and as its head rotates to the unlocked position, the spent hull is extracted from the chamber and forced against the ejector.

Case Ejection/Reloading: As the fired hull is flipped from the receiver, the bolt moves all the way to the rear where it cocks the hammer and compresses the recoil spring. Then as the spring begins to propel the bolt forward, the carrier lifts the fresh shell to chamber level, and it is forced into the chamber as the bolt completes its forward travel to the locked position. A pull on the trigger fires the shell and repeats the cycle as long as the magazine holds shells.

All of this takes place without the need of a gas-handling system, and this offers a couple of advantages to the shooter. For one, it gives the manufacturer the opportunity to build a lighter shotgun simply because adding gas-handling apparatus increases weight. A 20-gauge Benelli M2 Field with a syntetic ComforTech stock I just weighed went an ounce over six pounds on my postal scale; that’s darned light for an autoloader. My recoil-operated Franchi 48-AL of the same gauge has a wood stock, yet it weighs only 5.5 pounds. Due to the additional hardware required by its design, building a gas gun that light would be extremely difficult, if not impossible, to do.

More important than the weight factor is the question of reliability. Due to its simpler design, a good recoil-operated shotgun usually requires less frequent cleaning than a gas-operated gun. This is why the rental outfits of South American outfitters who offer high-volume deer hunting often consist of recoil guns. When both are cleaned as needed, the two types of autoloaders are equal in reliability, but assuming equal quality, the recoil gun will go longer without cleaning. But as it goes with any firearm design, we ef-
ten sacrifice one thing to gain something else. As a rule, perceived recoil is less with the gas gun than with the recoil gun. Its heavier weight soaks up part of the recoil, and its gas operation tends to prolong recoil delivery to the shooter, making the gas gun feel like it is kicking less than it actually is. Actual recoil remains the same, but recoil as perceived by the shooter is lighter.

Fortunately, when it comes to shotguns, we can have our cake and eat it, too. My 5.5-pound Franchi would kick me into the next county if I fed it extremely heavy loads, but that’s not the important role it serves in my upland battery. I use that gun a lot for shooting flushing birds fairly close over pointing dogs, and its lightning-like handling qualities make it ideal for early-season grouse hunting when the trees still wear their leaves and shooting is close and quick. None of that requires the use of heavy loads, and when used with relatively light loads, that gun is quite comfortable to shoot.

The ComforTech Advantage

Using light loads is one way to tame the recoil of a recoil-operated shotgun. Another is to come up with a way of isolating the shooter from recoil. A really good recoil pad helps a lot and so does the addition of adhesive-backed padding to the comb of the stock. Incorporating cushioning inserts into the sides of a synthetic stock also helps, as does forming the wrist and forearm of the stock into shapes that are friendly to the hands of the shooter. There are two ways of accomplishing all of this. One way is to round up the materials, get out your hacksaw and glue, and make various and sundry modifications to the stock of your gun. Another way is to let somebody else do all the work and buy a Benelli with a ComforTech stock. For a time it was offered only on 12-gauge guns, but it’s now available on 20-gauge Cordoba and M2 Field guns. Combine the latest in recoil-reduction technology with the relatively light recoil of the 20-gauge shotgun, and you’ve got a combination that’s easy on the shoulder and great fun to shoot.

Made of a lightweight synthetic material, the ComforTech stock has an extremely thick recoil pad made of a super-shock-absorbent, rubber-like material developed for the medical industry. The rear surface of the pad is grooved to prevent slippage, and it is ergonomically shaped to rest comfortably inside.
the shoulder pocket of the shooter. Dimpled areas at the wrist and forearm of the stock (called Air-Touch) serve to absorb shock and partially isolate the hands from recoil. Rather soft, the dimples offer a positive grasping surface, yet they are not at all abrasive to the hands during recoil.

Most shooters think of recoil as simply force applied against the shoulder when as much, if not more, discomfort is applied to the face, which just happens to be one of the most sensitive parts of the human body. Benelli engineers took care of that by installing a shock-absorbing strip along the top of the comb. It is made of the same material as the recoil pad. That same material also appears in one other area: 22 slots cut completely through the sidewalls of the stock are filled with it. Making the wall of the stock thin at inception and then cutting the slots into its sides allows it to flex during recoil. The 22 rubber chevrons soak up part of the push before it reaches the shooter. In other words, the entire buttstock, not just a recoil pad out back, serves as a recoil reducer. Special test machinery developed by Benelli engineers revealed that when the same 12-gauge loads were fired in a Super Eagle with Air-Touch ComforTech and in a Super Eagle without it, the former reduced peak recoil by as much as 40 percent. And that’s not all: energy delivered to the shoulder of a shooter was reduced over the entire recoil curve, not just during its peak.

The perception of recoil is a subjective thing and can vary quite a bit among shooters. I won’t attempt to describe my personal experience with the recoil-reduction capabilities of the ComforTech system in terms of percentages, ft-lbs of force, or whether or not it would allow a bruise to appear on your maiden’s shoulder. Instead, I will simply say that I strapped a half-pound bag of shot to the forearm of my 5.5-pound, wood-stocked Franchi 48-AL in order to bring its weight up to that of the six-pound M2 with ComforTech. I then shot both guns side-by-side during several rounds of five-stand, starting with the lightest 7/8-ounce target loads I had on hand and progressing up in power with various other loads until finally working into heavy 2½-ounce field loads with an ounce of shot at 1300 fps. I don’t mind admitting that both guns were uncomfortable to shoot with the heaviest loads, which is to be expected from any six-pound gun, whether recoil- or gas-operated. I actually consider this a moot point because heavier guns are available for use with the heaviest of loads. I find far more use in the uplands for a lightweight shotgun and plan to shoot it a lot, the ComforTech system is most certainly worthy of a serious look. It is available in black or camo and on 12- and 20-gauge guns. I’ve shot extensively two 20-gauge guns wearing the ComforTech system, the M2 Field and the Cordoba version of the Super Black Eagle. I like both so much I’m having a big problem deciding which to send back to Accokeek.